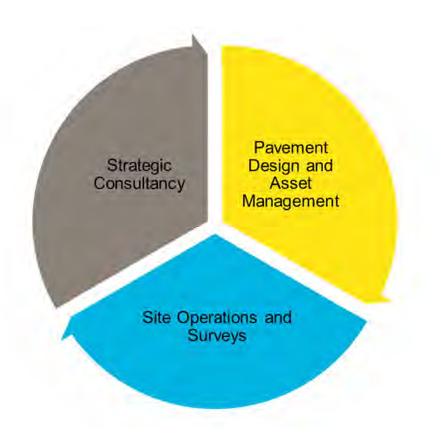


Pavement Whole Life Cost

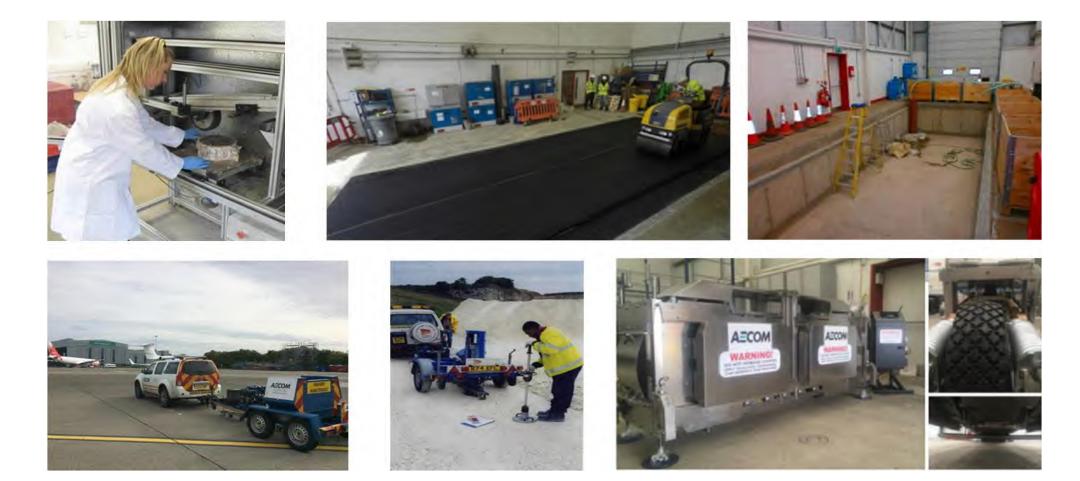
30 November 2021

Bachar Hakim


Delivering a better world

🔶 aecom.com

Contents


- Introduction
- Asset management and whole life cost principles
- Pavement design and construction options
- Pavement maintenance
- Construction unit rates and Net Present Value

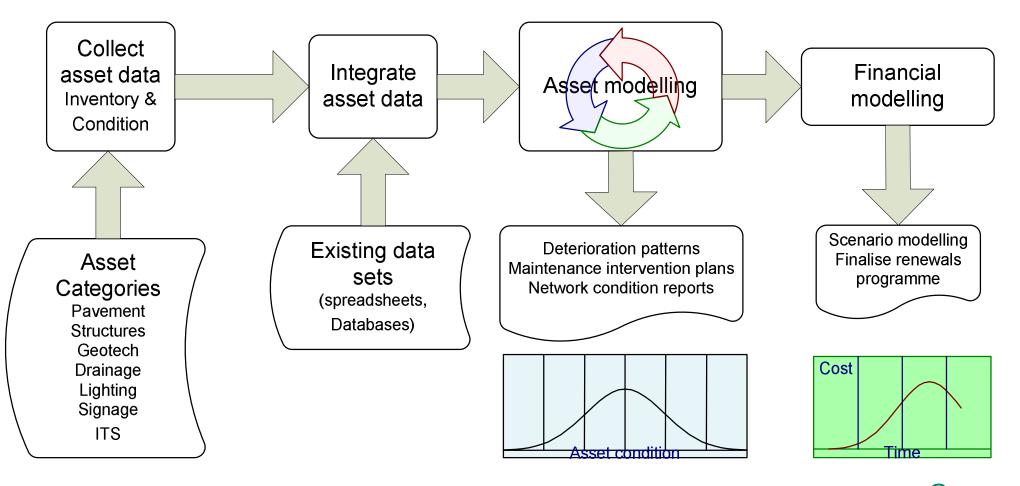
AECOM Road Asset Management

- Team of over 110 staff based in the UK
- Research into practice
- Asset management and whole life cost
- Cutting edge investigation, survey and data collection techniques
- Multi skilled resource with flexibility and competencies to work cross sector
- UKAS accredited lab including pavement test facility
- Materials performance and design expertise
- One stop shop

AECOM Research Laboratory and Pavement Surveys

Asset Management and Whole Life Cost Principles

Delivering a better world

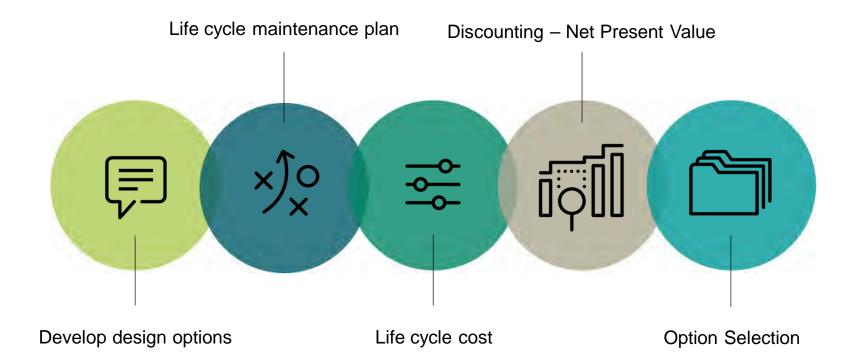


 Θ

 Develop maintenance strategy and programme to meet the authority performance requirements and financial constraints

6

Road Asset Management: Life Cycle Considerations


🔶 aecom.com

Project Whole Life Cost

- Whole life cost analysis is used to compare economic efficiency of different investment options (e.g. pavements)
- The analysis period is typically 60 years
- Requires design input to determine how long pavement design and/or rehabilitation will last

8

Whole Life Cost Process

Whole Life Cost Elements

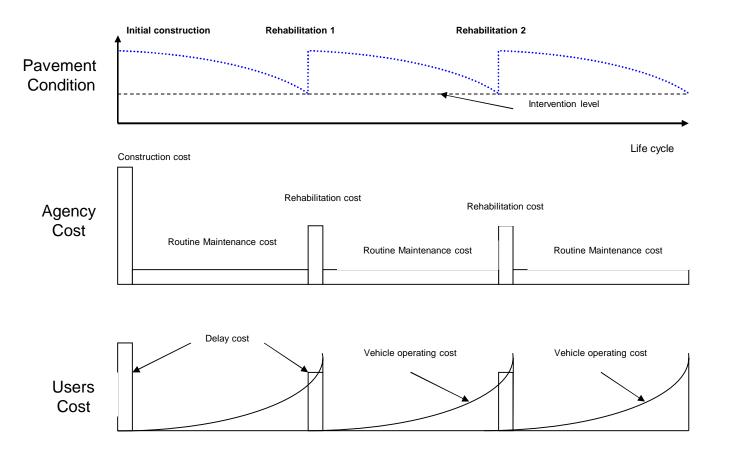
- Pavement initial construction or rehabilitation cost
 - Expected service life of initial pavement structure
- Future maintenance and rehabilitation costs
 - Expected timings/performance characteristics of future treatments
- Economic discount rate
- Expected residual value at the end of the design period, e.g. recycling
- <u>User costs</u>, as a result of extra time delay, increased vehicle operating costs, or increased accidents

Pavement Performance Requirements

- Skid resistance
- Ride and surface quality
- Structural bearing capacity to carry traffic load

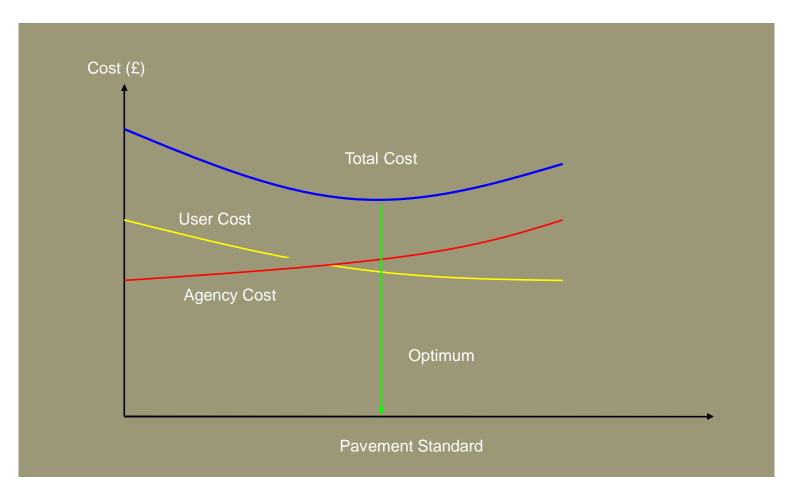
Pavements deteriorate and require maintenance

Pavement Deterioration



Pavement Deterioration

- Pavements deteriorate with time under loading and from environmental (temperature and moisture) variations
- Predicting deterioration is a challenge!
 - Vehicle type, loading magnitude and future growth are unknown
 - Environmental variations are unknown
 - Material properties are function of temperature and moisture
 - · Materials age and properties change with time



ecom.com

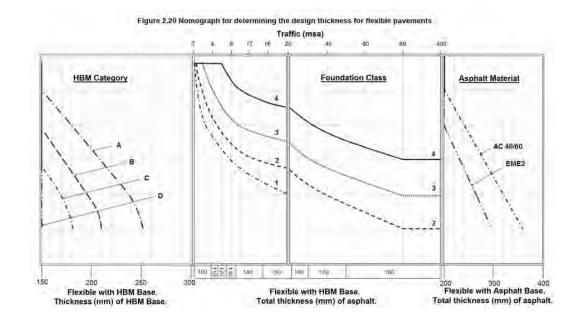
Whole Life Cost Modelling

15 💎 aecom.com

Pavement Design and Construction

Delivering a better world

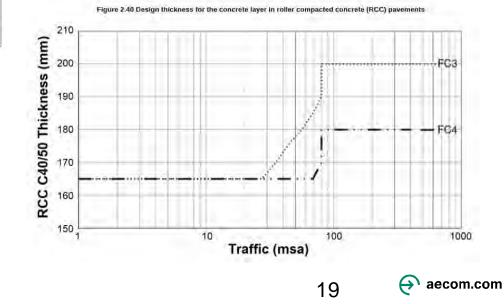
ecom.com


CD 226 Design for New Pavement Construction

- New pavement designs shall be carried out using a minimum of three options
 - Flexible with an asphalt base
 - Flexible with an HBM base
 - At least one type of rigid pavement should be considered
- The design report shall include details and results of the whole life cost analysis

A aecom.com 17

Pavement Design


- National Highways 3D Process (Develop, Design, Deliver)
- Ground condition, future traffic and design period
- Design new pavement options (CD226)
 - Typically for 40 years
 - Long life pavement (LLP) No structural treatment
 - Staged design? (not typical in the UK)
- Specify the materials (Appendix 7/1)
- Calculate the material quantities for the schemes
 - Section length
 - Number of lanes and lane width
 - Hard shoulder / Hard strip / Central reserve
 - Slip roads

CD 226 Rigid Pavement Design Charts

Traffic (msa) CRCB CRCP 100 200 .300 400 Foundation Class h= AS MPa In 45 MPa h=5.0 MPa 1=5.0 MPA Ti= 5.5 MPa In SSMPA fin 6.0 MPa h=60MPa 3 2 200 240 300 160 170 190 210 230 250 270 290 220 260 280 Concrete Design Thickness (mm) Concrete Design Thickness (mm)

Figure 2.26 Nomograph for determining concrete layer design thickness for continuously reinforced concrete pavements (CRCB and CRCP)

Pavement Rehabilitation Design

- Existing pavement condition (surveys and testing), future traffic and design period (CD227)
- Design pavement rehabilitation options
 - Typically for 20 years
 - Upgrade to LLP
 - Overlay
 - Inlay
 - Partial reconstruction (bound layers)
 - Full reconstruction
- Specify the materials (Appendix 7/1)
- Calculate the material quantities for the schemes

Overlay thickness

Trafficked pavement

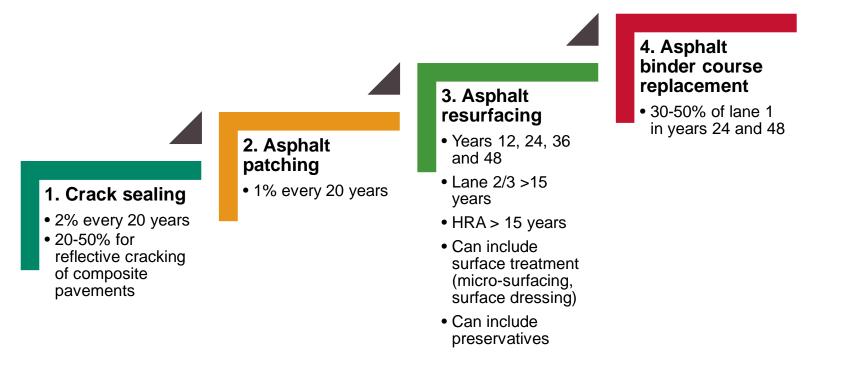
 Θ 20


Pavement Construction

	Pavement Type	P1	Pavement Type P2 Pavement Type P		P3	
Design Option	Construction	Initial Cost	Construction	Initial Cost	Construction	Initial Cost
Option A Fully Flexible	45mm HRA Surface 55mm Asphalt Binder 180mm Asphalt Base 350mm Granular Subbase 250mm Capping	£/m²	45mm HRA Surface 55mm Asphalt Binder 210mm Asphalt Base 350mm Granular Subbase 250mm Capping	£/m²	45mm HRA Surface 55mm Asphalt Binder 220mm Asphalt Base 350mm Granular Subbase 250mm Capping	£/m²
Option B Flexible Composite HBM B	45mm HRA Surface 95mm Asphalt Binder 170mm HBM B 350mm Granular Subbase 250mm Capping	£/m²	45mm HRA Surface 55mm Asphalt Binder 60mm Asphalt Base 190mm HBM B 350mm Granular Subbase 250mm Capping	£/m²	45mm HRA Surface 55mm Asphalt Binder 70mm Asphalt Base 200mm HBM B 350mm Granular Subbase 250mm Capping	£/m²
Option C Flexible Composite HBM C	45mm HRA Surface 95mm Asphalt Binder 150mm HBM C 350mm Granular Subbase 250mm Capping	£/m²	45mm HRA Surface 55mm Asphalt Binder 60mm Asphalt Base 170mm HBM C 350mm Granular Subbase 250mm Capping	£/m²	45mm HRA Surface 55mm Asphalt Binder 70mm Asphalt Base 170mm HBM C 350mm Granular Subbase 250mm Capping	£/m²

Pavement Maintenance

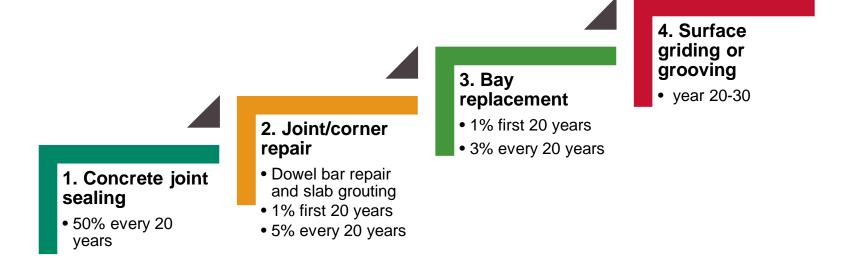
Delivering a better world


Maintenance based on Condition

- **Reactive** maintenance for safety considerations
- Routine maintenance including crack sealing, patching and drainage improvement (durability)
- Surface treatment to improve skid resistance and seal any cracks (friction and durability)
- Resurfacing (replacement/recycling) to improve skidding, to provide good ride quality and protect the lower pavement layer
- Thick overlay/inlay to improve pavement structural life
- Partial or full reconstruction

Flexible pavement routine and planned maintenance

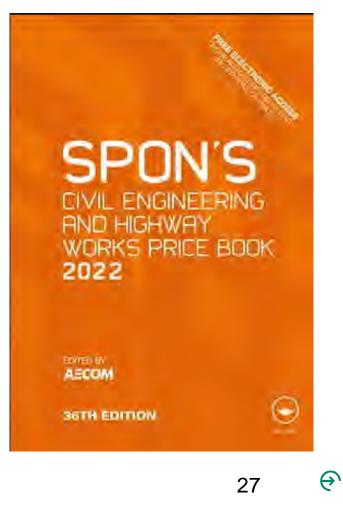
Long Life Pavement


Based on performance / experience, traffic loading and environmental condition

Jointed concrete pavement routine and planned maintenance

Long life pavement

Based on experience, traffic loading and environmental condition


Unit rates and Net Present Value

Delivering a better world

Pavement Materials Unit Rates

- Based on project location, materials availability and commercial considerations
- However, during the preliminary design data might not be available
- Spon's Civil Engineering and Highways Works Price Book
- Updated annually
- Does not include a comprehensive list of all materials
- Assumptions are needed

Example of Material Unit Rates

Material Ref.	Material Description	Layer Thickness (mm)	Unit	Rate (£)
	-		0	
Subbase (150MPa)	Granular material DfT Type 1 ^[3]	75	m ³	£39.89
Subbase (150MPa)		100	m³	£41.22
Subbase (150MPa)		150	m ³	£42.55
Subbase (150MPa)		200	m³	£43.88
Capping (75MPa)	Imported selected granular fill, DfT Class 6F (1.9 t/m3) ^[4]	-	m ³	£45.97
	Cement bound granular mixture Subbase; spread and graded	75	m ³	£104.40
		100	m ³	£105.32
		200	m³	£107.06
C3/4(500MPa)	0.9	75	m³	£93.96
C3/4(500MPa)	0.9	100	m³	£94.79
C3/4(500MPa)	0.9	200	m ³	£96.35
C6/8(1000MPa)	1	75	m³	£104.40
C6/8(1000MPa)	1	100	m³	£105.32
C6/8(1000MPa)	1	200	m³	£107.06
CBGM Cat B	1.1	75	m³	£114.84
CBGM Cat B	1.1	100	m³	£115.85
CBGM Cat B	1.1	200	m³	£117.77
CBGM Cat C	1.2	75	m³	£125.28
CBGM Cat C	1.2	100	m³	£126.38
CBGM Cat C	1.2	200	m³	£128.47

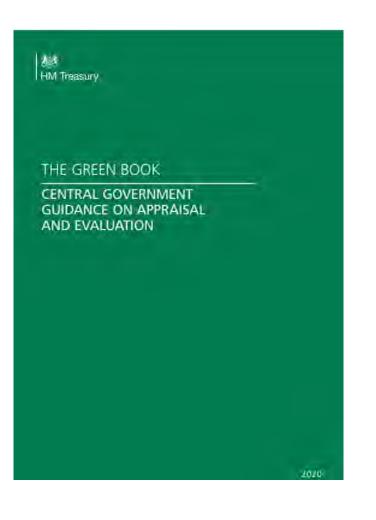
Note: The rates are extracted from **Spon's Civil Engineering and Highways Works Price Book**. Factors of the Spon's CBGM unit rate are assumed for HBM Category A, B and C.

28

ecom.com

Example of Material Unit Rates

Material Ref.	Material Description	Layer Thickness (mm)	Unit	Rate (£)
			2	0.47.00
	HRA binder cours e ^[6]	60	m ²	£17.82
HRA (Clause 943)	1.3	80	m ²	£19.91
()		60 80	m ² m ²	£23.17
HRA (Clause 943)	1.3	80	m²	£25.88
RCC	RCC ^[7]	200	m²	£31.03
CRCP: flexural strength 5.5 MPa	In situ concrete - Designed Concrete Strength RC 40/50	250	m²	£141.02
CRCP: flexural strength 5.5 MPa		220	m²	£125.63
CRCP: flexural strength 5.5 MPa		200	m ²	£115.74
CRCP: flexural strength 5.5 MPa		170	m²	£102.35
CRCP: flexural strength 5.5 MPa		160	m²	£97.32
	Fly ash bound mixture 1 and hydraulic road blinder bond mixture 1 ^[8]	100	m ²	£22.44
		150	m ²	£29.81
		200	m ²	£37.18
AC 32 dense bin 40/60 des	Asphalt Base Course	100	m²	£22.20
AC 32 dense bin 40/60 des		150	m ²	£29.46
AC 32 dense bin 40/60 des		200	m ²	£36.73
AC 20 dense bin 40/60 des	Asphalt Binder Course ^[9]	50	m²	£14.48
AC 20 dense bin 40/60 des		100	m²	£21.28
EME2	1.3	50	m²	£18.82
EME2	1.3	100	m²	£27.66
TSCS	Asphalt Surface Course	30	m²	£10.22
TSCS		50	m ²	£15.73


Note: The rates are extracted from **Spon's Civil Engineering and Highways Works Price Book**. Factors of the Spon's CBGM unit rate are assumed for HBM Category A, B and C.

Example of Construction Cost

Pavement	Layer	Material Ref.	Thickness (mm)	Rate Unit	: Cost	Total Cost (£)
Flexible	Surface	TSCS	40	£12.98 m2	£844,673	£4,712,179
with AC	Binder Course & Base	AC 32 dense bin 40/60 des	285	£49.08 m2	£3,195,032	
base	Performance FC2	Subbase (150MPa)	230	£44.91 m3	£672,474	
Flexible	Surface	TSCS	40	£12.98 m2	£844,673	£4,814,331
with EME	Binder Course & Base	EME2	230	£50.65 m2	£3,297,185	
base	Performance FC2	Subbase (150MPa)	230	£44.91 m3	£672,474	
RCC	Surface	TSCS	40	£12.98 m2	£844,673	£4,956,868
	Binder	HRA (Clause 943)	50	£21.81 m2	£1,419,668	
	Concrete Base	RCC	200	£31.03 m2	£2,020,053	
	Performance FC2	Subbase (150MPa)	230	£44.91 m3	£672,474	
Flexible	Surface	TSCS	40	£12.98 m2	£844,673	£4,874,594
with CBGM	Binder Course & Upper Base	AC 32 dense bin 40/60 des	140	£28.01 m2	£1,823,473	
Cat B Base	HBM Base	CBGM Cat B	200	£117.82 m3	£1,533,975	
	Performance FC2	Subbase (150MPa)	230	£44.91 m3	£672,474	
Flexible	Surface	TSCS	40	£12.98 m2	£844,673	£4,754,996
with CBGM	Binder Course & Upper Base	AC 32 dense bin 40/60 des	140	£28.01 m2	£1,823,473	
Cat CB Base	HBM Base	CBGM Cat C	170	£127.80 m3	£1,414,377	
	Performance FC2	Subbase (150MPa)	230	£44.91 m3	£672,474	
CRCP	Surface	TSCS	40	£12.98 m2	£844,673	£9,095,396
	CRCP	CRCP: flexural strength 5.5 MPa	200	£116.41 m2	£7,578,250	
	Performance FC2	Subbase (150MPa)	230	£44.91 m3	£672,474	

Net Present Value

- Discounted annual rates
- The Green Book Central Government Guidance on Appraisal and Evaluation
 - 3.5% is recommended for the first 30 years
 - 3% is recommended for post year 30 respectively

Whole life cost model example

	Option 1: Fully Realiste Payement		Option 5: Composite Resible Parement		Option 9: Rater Compacted Concrete	Coden 9: Rober Comesced, Concrete		
′ear	Actual cost	Discounted Cost	Actual cost	Discounted Cost	Actual cost	Discounted Cost		
023	£34,966,787	£34,966,787	£32,696,332	£32,696,332	£32,012,269	£32,012,269		
024			,					
025								
2026								
2027								
2028								
2029								
2030								
2031								
2032								
2033								
2034								
2035	£3,462,769	£2,291,603	£3,462,769	£2,291,603	£4,398,034	£2,910,545		
2036								
2037								
2038								
2039								
2040								
2041								
2042								
2043								
2044								
2045								
2046								
2047	£5,070,579	£2,220,696	£6,142,452	£2,690,131	£8,625,324	£3,777,522		
2048								
2049								
2050								
2051								
2052								
2053								
2055								
2056								
2057								
2059	£3,462,769	£1,194,768	£3,462,769	£1,194,768	£8,625,324	£2,976,016		
	23,402,705	21,134,700	13,402,705	21,194,700	10,020,024	22,970,010		
2060								
2061								

32

↔ aecom.com

Summary and Conclusions

- Whole life cost appraisal is required for new and rehabilitated pavement projects
- To compare different investment options
 - Pavement design
 - Initial construction cost
 - Life cycle maintenance plan
 - Life cycle maintenance cost
 - Discounted rates
- Results should be used with other factors such as project sustainability, constructability, construction programme, durability and users cost for pavement selection and detailed design

Delivering a better world

