

Digital and Environment

Wednesday 17 September 2025

Pilot study on Real-Time Surface Flood Warning for Nuneaton

Naoki Fujiwara – CTI Engineering John Parkin – Waterman Aspen Tetsuya Tsuji – CTI Engineering

Introduction by John Parkin

- 1. Background
- 2. Opportunity

Pilot study on Real-Time Surface Flood Warning for Nuneaton

17th Sep 2025, MHA+

Tetsuya Tsuji Senior Engineer, CTI Engineering

Wednesday 17 September 2025

Agenda

- 1 What is RisKma?
- 2 Project Overview
- 3 2D-Simulation for Predicting Surface Water Flooding
- 4 Web-based Dashboard
- 5 Summary and Way Forward

What is RisKma?

Water Disaster Risk Mapping System

- Integrated management of observational and forecast data -

Predict inundation areas and depths from river and urban floods through simulation

Alert Emails

Automatically send alerts when risk thresholds are exceeded

Weather Warnings

Receive notifications for official advisories and severe weather alert

Live Camera Images

Monitor conditions visually through connected camera systems

All Water-Related Disaster Data on One Screen

What is RisKma? - Track Records

RisKma is widely adopted by

公基盤(乙

Being Demonstrated in Madrid!

Project Overview

Objective

To support local authorities in making informed decisions, including evacuation planning, by assessing future surface water flood risks.

Counterpart

Warwickshire City Council

- Build a 2D hydraulic simulation model to predict high-risk flood areas in real time
- Provide access to real-time observation data (water levels, rainfall)
- Develop RisKma, a web-based platform

Outcome

Enhanced Decision-making capability for emergency response and evacuation

Project Overview

Target Area

Nuneaton town, Warwickshire (112.28 km²)

Build an in-house 2D Hydraulic Simulation Model

- In-house 2D hydraulic model (developed by CTI)
- Built on approx. 15m grid resolution

The model solves the **dynamic wave equations** consisting of the **shallow water equations (2D Saint-Venant equations)**:

Continuity equation:

$$rac{\partial h}{\partial t} + rac{\partial (hu)}{\partial x} + rac{\partial (hv)}{\partial y} = r$$

Momentum equations:

$$rac{\partial (hu)}{\partial t} + rac{\partial (hu^2)}{\partial x} + rac{\partial (huv)}{\partial y} = -ghrac{\partial z}{\partial x} - ghS_{fx}$$

$$rac{\partial (hv)}{\partial t} + rac{\partial (huv)}{\partial x} + rac{\partial (hv^2)}{\partial y} = -ghrac{\partial z}{\partial y} - ghS_{fy}$$

where:

- h: water depth
- u, v: velocity components in x and y
- z: ground elevation
- r: rainfall or lateral inflow
- S_{fx}, S_{fy} : friction slope components in x and y directions
- g: gravity acceleration

- Simulations carried out using 30-, 100-, 1000-year design rainfall events
- Results compared against the EA's official flood risk maps for validation

- Simulations carried out using 30-, 100-, 1000-year design rainfall events
- Results compared against the EA's official flood risk maps for validation

- Simulations carried out using 30-, 100-, 1000-year design rainfall events
- Results compared against the EA's official flood risk maps for validation

2D-Simulation for Predicting Surface Water Flooding

 This system was able to predict the flooding in advance, even for the flood damage that occurred on 19 July.

Web-based Dashboard

Web-based Dashboard

Key Features

Observation Data

Forecast Rainfall Data

Simulation Result

Web-based Dashboard (Application in Japan)

-1h Present +1h +6h+12h

Web-based Dashboard (Application in Japan)

Web-based Dashboard (Application in Japan)

Key Features

Observation Data

Forecast Rainfall Data

River Water Level Prediction

Alert Information

CCTV camera

Summary and Way Forward

Summary

- Developed the Riskma system in Nuneaton, Warwickshire
- Built a flood inundation model to predict future surface water flood risks in real time

Way Forward

- Expand the types of information available on RisKma (e.g., camera images, water level gauges, rainfall data)
- Strengthen decision support functions, including automatic alerts and evacuation guidance

CTI / Waterman Initiative

Naoki Fujiwara
Director & Managing Executive Officer, CTI
Engineering
Executive Director, Waterman Group
President & CEO, CTI Engineering International

Wednesday 17 September 2025

Acoustic Visual Inspection & Analysis for Sewerage

 Unknown water infiltration detection technology using Al-based acoustic data analysis -

Acoustic vs Traditional Methods

- Fast deployment into manholes. Larger catchment coverage.
- No manhole entry by personnel surface access.
- No interference with flow less chance of blockage.
- Quick and accurate AI analysis vs lengthy manual analysis of flow logs.
- Cost considerably cheaper.
- Secured ATEX certification for UK

How does the AI work?

- The equipment is installed into the manhole.
- Sound data is collected for Approx. 1 month.
 - Dry and wet weather scenarios
- The sound is then abstracted and submitted to the CTI server for analysis.
- Over 200 parameters feed into the AI inc. rainfall data, groundwater levels.
- Approximately 2 weeks of AI Analysis to provide an accurate baseline and identification of abnormalities that indicate infiltration.

DRIMS®

Dynamic Response Intelligent Monitoring System

- Extensive and economical collection of road surface condition using only two smartphones placed in the vehicle -

IRI Analysis

- IRI: International Roughness Index
- Use sensors in the smartphone.
- Evaluation of road surface roughness widely and quantitively.
- Half-car models are used, which have less variation in accuracy depending on the installation location compared to conventional quarter-car models.
- DRIMS's IRI analysis algorithm was developed at Tokyo University. u_b

Half-car model

Al Analysis

- Using actual road defects images as teaching picture,
 Al engine is optimized by deep learning.
- Learnt defects are identified by the system from shot video during drive.
- Uses an AI analysis engine built on 100s of thousands of UK image data.

Maps & Dashboard

- By analysing data measured by sensors mounted on smartphones, road surface conditions can be accurately and quantitatively evaluated.
- By applying AI to images taken while driving, road surface defects such as potholes and cracks can be detected.

Examples of anomaly detection

Pothole

