Sustainability in Highway Design and Asset Management

Laura Traseira-Piñeiro Project Engineer ORIS Materials Intelligence

Laura Traseira-Piñeiro Project Engineer **ORIS** Materials Intelligence

Laura Traseira-Piñeiro Project Engineer **ORIS** Materials Intelligence

Sustainability and Digitalisation in Infrastructure Design

What, why, how?

Principles of Pavement Sustainability in Road Construction

Importance of due diligence at an early stage of the project

25% of the global GHG emissions come from the **transportation sector**

The predominant sector is **road transportation**, accounting for **75%**

Up to **25%** of those GHG emissions correspond the **road infrastructure** construction and maintenance

Principles of Pavement Sustainability in Road Construction

Pathway for carbon reduction in road infrastructures

Optimisation of the sourcing

Using local sources to reduce transportation distances

pavement solutions

to the climate change

Implementation of innovative

That can extend the lifespan of the pavement and improve its resilience

environment

Selection of low-carbon materials Such as the use of recycled materials or industrial byproducts

CO2

HH

000

Comparative analysis of pavement designs Assessing multiple solutions considering the lifecycle of the asset

Digital Solutions Driving Sustainability in Road Infrastructure

Leveraging digitalization for an informed decision making

.....driven by the collaboration across three key expertise

Digital Solutions Driving Sustainability in Road Infrastructure

Leveraging digitalization for an informed decision making

....strengthening the connection between project stakeholders

With **ORIS**, designing sustainable infrastructure is as simple as ABCD

Assess

key multi-criteria impacts on your infrastructure projects

Benchmark

materials suppliers & alternatives to optimise your costs

Compare

designs scenarios to meet & exceed your client's requirements

Decide

on consistent results basis with your stakeholders and deliver to the market faster

ORIS, the sustainability platform for infrastructure

Hazel Road: Advancing Sustainable Infrastructure

Project Overview

Project description

Q Hazel Road, Ollerton

- Hazel Road was a carriageway maintenance scheme completed in February this year.
- The scheme was designed to receive a 100mm inlay treatment

40mm SMA Warm Mix Asphalt Surface with 10% RAP

60mm CRBM Foamed Binder

Project description

Managing Asphalt Waste Containing Coal Tar (AWCCT)

MANAGING RECLAIMED ASPHALT HIGHWAYS AND PAVEMENTS DECEMBER 2024 ADEPT & CIWM Construction, Demolition & Excavation Technical Advisory Group Guidance CIWM D&E TAG

• AWCCT is classified as hazardous and was present in all the cores taken.

- The option to recycle is less harmful to the environment than all alternatives.
- Use of cold recycled materials can provide a compliant and cost effective route - testing is essential.
- The ADEPT guidance is an excellent resource.

Issue date: December 2024

Project description

Why Cold Recycled Bound Material (CRBM)?

- The CRBM production site was less than a mile away
- Compliant treatment of AWCCT under a permit
- Supported by standards SHW 948 and B9228
- Rigorously tested
- Cost benefits
- Less energy used in production of the material

40mm SMA Warm Mix Asphalt Surface with 10% RAP

60mm CRBM Foamed Binder

A sustainable and cost effective approach

Applying ORIS Materials Intelligence

Optimising solutions and empowering data-driven decisions

ORIS Materials Intelligence Materials Intelligence Transportation Analysis

M (2)

ORIS Materials Intelligence Materials Intelligence Transportation Analysis

M 0

QRIS Materials Intelligence

Optimised sourcing of construction materials

By comparing transportation KPIs of the chosen supplier with the next closest, the following reductions were achieved:

47% decrease in distance
51% decrease in time
47% decrease in carbon footprint
41% decrease in cost per tonne

*Compared to procuring materials from the next closest supplier

20,164

22.976

25,803

Alternative design . Hazel Road: Final d.

Alternative design.

-35%

-26%

-17%

Digital optioneering To find the most sustainable solution

The **chosen treatment**, leveraging innovative and sustainable material selection, reduced the carbon footprint by **26%*.**

Further opportunities were identified, with alternative options that could potentially lower the carbon footprint by up to **35%*.**

*Compared to a conventional material selection.

Hazel Road: Final d.

Alternative design.

38,833

42,928

-11%

-1%

Cost efficiency

Sustainability doesn't necessarily require a higher investment

Investing in sustainable design doesn't always require a higher budget. In fact, cost savings of **11%** and **12%** were identified on the design options considering Cold Recycled bound Materials*

*Compared to a conventional material selection.

Data-Driven Insights To make informed decisions

Comprehensive data analysis enables **informed**, **strategic decision-making**, aligning with **sustainability objectives**.

Increasing the % of RAP in the SMA didn't significantly contribute to the carbon reductions. Greater savings were achieved by using an SVE CRBM instead of a QVE CRBM.

The Road Forward

Lessons Learned and Next Steps

Conclusions from Hazel road case study

Key Takeaways

Carbon savings can be unlocked through smart maintenance strategies

Digital tools enable smarter, faster, more sustainable infrastructure

Collaboration among all stakeholders is critical for impact

Data-driven decisions improve project outcomes on time, on budget, and with lower emissions

Scaling digitalisation is key to achieving global sustainability goals

laura.traseira@oris-connect.com

peter.wells@viaem.co.uk

Laura Traseira-Piñeiro Project Engineer **QRIS** Materials Intelligence

