

Designing for Cycling Bitesize – October 2023

Peter Leslie

Delivering a better world

- Introductions
- Safety Moment
- Part 1 | Planning
- Part 2 | Links
- Part 3 | Junctions
- Part 4 | Crossings
- Part 5 | Supporting measures
- Discussion

Peter Leslie Regional Director (Scotland)

Wellbeing – World Mental Health Day

Sone Million Lives

to keep regular track of

wellbeing

Thanks for being part of the World's Biggest Mental Health Check-in 2023. #WBMHCI

Quick Check-in	Full Check-in
Five questions (two minutes)	75 questions (10 to 15

minutes) in-depth review of

your mental health

43788 check-ins have been completed

World Mental Health Day 2023

« back to front page

Connect with your wellbeing World Mental Health Day

Take the AECOM University Mental Health Matters course (30 minutes) This course ensures you have an understanding o all the mental health resources available to you, your spouse/domestic partner and dependents.

Tap into mental health resources Learn the importance of practicing good preventive mental wellbeing and find AECOM benefits and programs to support your journey with this handy one-page guide.

Practise mindful meditation Check out this pre-recorded AECOM Virtual Meditation Class for a guided session of mindfulness meditation and/or call your health provider for locally available resources.

Receive daily emotional support

Foundations. Your household family members can access it too!

Attend the Personal and Professional Boundaries WELLbinar on October 31 Setting boundaries is important to experiencing healthy productive relationships – a key component in good emotional veilbeing. Learn how to effectively communicate boundaries and understand approaches to resolving boundary issues by attending the WELLbinar.

Reach out to a Global Mental Health Ally Connect with a Global Mental Health Ally to receive confidential support from colleagues who have received special training.

Connect with colleagues Participate in a virtual or in-person event to focus on mental wellbeing.

Keeping your emotional wellbeing balanced is a daily activity. Explore all of the activities and resources AECOM offers to support your emotional wellbeing on WellBeingAtAECOM.com.

Need Help Now?

Part 1 | Intro and Planning

The first few chapters – What are the similarities?

Delivering a better world

Design Manuals

England & Northern Ireland (2020)

> Cycle Infrastructure Design

Scotland (2021)

Wales (2021)

Republic of Ireland (2023)

Local Transport Note 1/20 July 2020

Department for Transport

Design Manuals

-10

MAYOR OF LONDON

TRANSPORT FOR LONDON

Version: V1.0 2017

Factshe

cyclists.

Good infrastructure should help to make cycling safer and address

negative perceptions about safety, particularly when it comes

Edinburgh Street Design Guidance : Part C - Detailed Design Manual

Consideration should be given to improving existing streets as well as providing new infrastructure.

cycling should achieve.

C1 - Designing for Cycling

Cycle route core design principles include:

1. Salety 2. Directness 3. Comfort Coherence

5. Attractiveness 6. Adaptability

2- Directness

Routes should be logical and continuous, without unnecessary

obstacles, delays and diversions,

and planned holistically as part

Space for cycling is important but a narrow advisory cycle lane next to a narrow general traffic lane and guerthral at a busy junction is not an acceptable offer for This track works well on links but requires cyclists to give way at each side road. Cyclists often choose to stay on carriageway rather than take fragmented outes with built-in delay

Uncomfortable transitions between on-and off-carriageway facilities are best avoided, particularly at locations where conflict with other road users is

Bicycle Infrastructure Manuals

Search 500+ cycling infrastructure documents from all over the world. Cycling knowledge at your fingertips.

Search now

Here you will find cycling infrastructure design manuals, strategy guides and more all curated from all over the world and organized into one easyto-use database. Missing anything? Let us know!

Guidance Structure

			Design Guidance: Active Travel (Wales) Act 20	13 9	
Co	ntents				
		Contents			
Fore	word	Acknowledgements Foreword How to Use This Document	4 5 6		
1	Introduction	Part A – General Princip	e Descon Manual		Version
2	Cycling in context	1 Introduction Tal 2 Legal and Policy Fram 1. In 3 Involvement Encoder	ble of Contents	3	4.1.5 Vertical Alignment 4.1.6 Surface CrossFall
3	Planning for cycling	Part B – User Needs, P	2 Use of Guidance 3 Relationship with Other Design Standards and Guidelines 4 Relaxations and Departures	4 4 5	4.1.7 Clearances 4.1.8 Headroom 4.2 Cycle Links
4	Design principles and processes	4 User Needs	5 Updates and Revisions 6 Policy Context	5	4.2.1 Introduction 4.2.2 Segregated Cycle Facilities
5	Geometric requirements	Section 1 – Pedestrian 2. M Section 2 – Cyclists' N 2:	lain Requirements & Design Principles 1 Five Main Requirements for Cycle-friendly Infrastructure 2 Key Design Principles	7 8 12	4.2.3 Standard Cycle Tracks 4.2.4 Stepped Cycle Tracks 4.2.5 Protected Cycle Lanes 4.2.5 Diracks www.Cycle Dirackr
6	Space for cycling within highways	5 Network Planning Section 1 – Network Pl Section 2 – Network Pl 24	s Types of Cycle Venicles 4 Types of Cycle Links 5 Choosing Appropriate Facilities 6 Width Calculator	14 16 20 22	4.2.7 Greenways and Shared Active Travel Facilities 4.2.8 Cycle Lanes 4.2.9 Cycling in Mixed Traffic
7	Quiet mixed traffic streets and lanes	 Design for Walking and 3. 	lanning for cycling 1 Cycle Network Planning 2 Planning for Cycling in Private Developments	25 26	4.2.10 Controllow Cycling 4.2.11 Parking and Loading on Links 4.2.12 Bus Stops
8	Motor traffic free routes	Part C – Related Matter 4. D.	and Other Public Infrastructure Projects esigning for cycling Geometric Requirements	29 31	4.2.13 Transitions 4.2.14 Pedestrian Crossings of Cycle Tracks 4.3 Priority Junctions
9	Transitions between carriageways, cycle lanes and cycle tracks	7 Integration with Other I 8 Related Facilities Section 1 – Related Fa Section 2 – Related Fa	4.1.1 Design Speed 4.1.2 Sight Distance 4.1.3 Visibility Solays 4.1.4 Hortizontal Alignment	32 32 33 35	4.3.1 Introduction 4.3.2 Key design considerations 4.3.3 Cycle tracks at priority junctions 4.3.4 Cycle lanes at priority junctions
10	Junctions and crossings	9 Creating, Improving and Man	naging Highways 227		
11	Cycle parking and other equipment	 Construction, Maintenance a Monitoring and Evaluation 	ind Management 241 265		2 11 12 12
12	Planning and designing for commercial cycling	Appendices			
13	Traffic signs, road markings and wayfinding	 A Design Elements B Walking Route Audit Tool C Cycling Route Audit Tool D Legal Procedures 	273 387 395 407		
		version 1 Desember 2014.			Cycling by Design 2021

Recurring Themes

Introduction – Why we support designing for people cycling and during this process, how as designers we must appreciate and prioritise other users in particular more vulnerable users.

Summary – Each of them summarise the legality of the manual and terminology with in it.

Principles – An early indication of design principles.

Importance – How important the design guidance is and how delivery of the infrastructure will be enforced.

Planning

Summary of planning chapters and key points

Delivering a better world

2.0 Planning for Cycle Users

2.1	Introduction	page 1-
2.2	Cycle users' needs	page 1
2.3	Core design principles	page 1
2.4	Level of service	page 2
2.5	Planning and delivery process	page 2
2.6	Network planning	page 2
2.7	Planning for new developments	page 4
2.8	Design review	page 4

Fighre 2.1	Planning and delivery property	. 10ge 34
Fiper12	Model setwork integration	page 11
Figure 2.3.	Exclusion more convenient walking, whenling and systing readers	page 1)
Fiper 24	Ann Traffic Meightingerhood approach	-page 35
Figure 1.5:	Exercise of proposed accessibility unprovements in Rollow (Texaport for Greater Manchester)	page JJ
Time The	Rural caste metworks	-case 19

page 17

sage 21

saje 17

Table 2.2 Eyele onhide requirements ...

Tuber 2.1 Sommuny of Level of Service indicators

Table 2.4. Low Traffic Neighburhood measures

Measure	Purpose	Location	Example
Modal filter	To restrict vehicle movements whilst permitting walking, wheeling and cycling. (further guidance in Chapter 3)	On streets or at junctions where this will help to remove through-traffic. Care is needed to minimise the lengths of any reverse movements needed by local motor traffic.	
Pocket park	To create a green space between modal filters used for walking, wheeling, cycling and play.	On parts of streets where no local vehicle access is required.	
Diagonal filters	To enforce turning restrictions at crossroad junctions, whilst permitting walking, wheeling and cycling in all movements.	Crossroad junctions	
Turning restrictions	To restrict vehicle turning movements.	Junctions	
One-way streets	To limit vehicle access or egress from a street as part of a wider network plan. (further guidance in Chapter 3)	Only on streets which can be designed to avoid any potential for increased motor traffic speed resulting from one-way operation.	
Bus gates	To permit through-movements by local bus and cycling, whilst restricting through-traffic.	On key local bus routes that permeate low traffic neighbourhoods.	

For all measures, keeping sign clutter to a minimum is a key objective. Using planters and other measures sympathetic to the local environment will enhance the placemaking aspect of the neighbourhood.

Table 2.2: Cycle vehicle requirements

Figure 2.1: Planning and delivery process

Planning for cycling

Figure 3.2: Analysis of local trip patterns using travel survey data

Local Cycling & Walking Infrastructure Plans (LCWIPs)

- Based on potential demand (eg Propensity to Cycle Tool) not existing cycling levels
- Area-based approach valid (eg Low Traffic Neighbourhoods)

A local network will typically be made up of various elements:

- Dedicated space for cycling within highways
- Quiet mixed traffic streets
- Motor traffic free routes
- Junction treatments and crossings
- Cycle parking at origins, destinations and interchanges with other modes

Mode prioritisation

 Conscious of retro-fitting cycle infrastructure, consider mode priority on routes when planning

Planning for cycling

Principle	• • • High level of service	Medium level of service	Low level of service
Safety	Cycle users are always protected from motor traffic when required by the conditions set in Table 3.2 in Chapter 3.	In some cases, cycle users are expected to mix with motor traffic in higher speed or volume conditions that are set out in Table 3.2 in Chapter 3.	In some cases, cycle users are expected to mix with motor traffic in significantly higher speed or volume conditions that are set out in Table 3.2 in Chapter 3.
Coherence	Cycle routes are continuous and fully joined-up. They allow cycle users to maintain consistent speed, are well-signed and intuitive.	Cycle routes contribute to a network, but users experience some disruption when connecting between routes, and navigation may be difficult.	Cycle users must dismount or are 'abandoned' at the end of a route.
Directness	Cycle route is at least as direct as the equivalent motor traffic journey, with minimal need to stop or give-way. Delay for cycle users at junctions is less than for motor traffic.	Cycle route is up to 20% less direct than the equivalent motor traffic journey, with some need to stop or give-way. Delay for cycle users at junctions is equal to motor traffic delay.	Cycle route is more than 20% less direct than the equivalent motor traffic journey, with frequent need to stop or give-way. Delay for cycle users at junctions is greater than for motor traffic.
Comfart	Cycle route surfaces are machine laid, smooth and well-maintained (at least as regularly as the road network). Desirable minimum widths and gradients are fully achieved.	Sections of route are hand-laid with frequent joints. Route is maintained less frequently than the road network. Desirable minimum widths or gradients are not achieved for some of the route.	Sections of the route are unbound, bumpy, not regularly maintained or otherwise hazardous. Desirable minimum widths or gradients are not achieved for the majority of the route.
Attractiveness	Cycle route and parking areas are well lit, overlooked and do not create any personal security issues for users. The cycle route adds to the sense of place in the area, encouraging people to spend time there.	Some sections of the route are infrequently lit or not overlooked. Parking areas are secure but not overlooked or are insufficient in number.	The majority of the route is infrequently lit or not overlooked. Parking areas are not secure or are insufficient in number.
Adaptability	Cycle route and parking areas have the flexibility to expand, evolve or adapt to changing demands.	Only some of the cycle route or parking areas has the flexibility to expand, evolve or adapt to changing demands.	No scope to amend cycling infrastructure once installed.

Table 2.3: Summary of Level of Service indicators.

Key Design Principles

Delivering a better world

Core Principles

DfT LTN 1/20

DO Cycle networks bC should be planned and designed to allow dire people to reach their mo day to day destinations easily, along routes that connect, are simple to navigate and are of a consistently high quality.

DO Cycle routes
should be at least as
direct – and preferably
more direct – than
those available for
private motor vehicles.DO Not only must
cycle infrastructure be
safe, it should also be
perceived to be safe so
that more people feel
able to cycle.

DO Comfortable conditions for cycling require routes with good quality, well-maintained smooth surfaces, adequate width for the volume of users, minimal stopping and starting and avoiding

steep gradients.

DO Cycle infrastructure should help to deliver public spaces that are well designed and finished in attractive materials and be places that people want to spend time using.

Welsh Design Guidance

- 4.1.2 The needs of people walking and cycling can be summarised under the following headings, which are also reflected throughout the guidance. People wish to use routes that are:
 - Coherent
 - Direct
 - Safe
 - Attractive
 - Comfortable

Irish National Cycle Manual

Cycle Design Manu

can also provide important transport corridors so it is important that this is factored into such scheme designs.

6. Universal Design and Inclusive Mobility

Cycle facilities should be designed to be useable by people of all ages and abilities using a variety of different types of cycles and wheeling equipment. It is worth noting that there has been a noticeable increase in recent years in the use of non-standard cycle equipment such as cargo bikes, tricycles, electric bicycles etc. and it is anticipated that their popularity will continue to increase as our cycle networks become more developed.

The use of motorised wheelchairs and mobility scooters is also permitted on cycle tracks and it would be similarly anticipated that as our cycle networks are developed further, more people using wheelchairs and mobility devices will be encouraged and enabled to use the networks as is commonly seen in other countries with more mature cycle networks (see Figure 2.6).

It is also worth noting that legislation to allow the use of Powered Personal Transporters e.g. E-Scooters, on Irish Roads including cycle facilities, was enacted in June 2023. It is anticipated that further guidance in relation to the accommodation of these devices on cycle infrastructure will be issued in due course.

igure 2.6: Person using a mobility scooter on cycle track in the Netherlands

Infrastructure that meets principles **AS A MINIMUM**.

Scotland Cycling by Design

Safety: Designs should minimise the potential for actual and perceived accident risk. Perceived risk is a key barrier to cycle use. Users should feel safe as well as be safe at all stages of their journey, including parking at their origin and destination. It is important to provide consistency of design and avoid ambiguity.

Coherence: Cycling infrastructure should form a coherent network which links origins and destinations. This allows the cycle network to link communities, facilities and integrate with other modes of travel. Routes should be continuous from an origin to a destination, easy to navigate, well signed, intuitive and of a consistently high quality.

Directness: Cycle users should be offered the most direct route based on existing and latent trip desire lines, minimising detours and delays. Directness has both geographical and time elements, with delays at junctions and crossings, as well as physical detours, affecting it.

Attractiveness: Infrastructure should be designed in harmony with its surroundings in such a way that the whole experience makes cycling an attractive option. A route should complement and enhance the area through which it passes. Lighting, personal security, aesthetics, environmental quality and noise are important considerations.

Comfort: Cycle user comfort is critical to journey experience

and making cycling an everyday choice for users. Routes should

minimise mental and physical stress and effort, be convenient and

avoid complex manoeuvres. Smooth, uninterrupted surfaces with

gentle gradients and secure, sheltered cycle parking will enhance

comfort. Cycling infrastructure should be well-maintained to

ensure its continued comfort and appeal.

Adaptability: Cycling infrastructure should be able to evolve and improve as cycle demands change. Meeting the preceding design principles in a way that allows infrastructure to adapt to changing user needs will form a critical component of cycle networks. Trialling of potential measures using more flexible infrastructure will assist in meeting this aim.

Key Messages for Designers

The following 12 key messages summarise how designers should approach the application of Cycling by Design's requirements in this new context:

We must plan and design for mass cycling by all kinds of people on different types of bike. Cycling infrastructure should no longer be something that we provide on the road network to only be used by the same people who are currently cycling. Instead it needs to be something that can be used by everyone.

Cycles must be **treated**

travel at different speeds from

those walking and wheeling.

In most circumstances these

Design with

maintenance in mind.

Well-designed and constructed

undermined if it becomes too

cycling infrastructure can be easily

difficult to maintain. This must be

planned for at the earliest stage.

two user categories should be separated from each other.

Cycle users must be 2 protected from motor **traffic** by physical separation or by significantly reducing the volume and speed of motor traffic on local neighbourhood streets. Additional space for protected facilities should be taken from the road carriageway and not from the footway.

Cycling infrastructure must be fully accessible by anyone who wants to use it, regardless of age, ability or experience. This means that gates or other access barriers which restrict the movement of many people, including those with disabilities, should not be included in design.

6 as vehicles. People cycling designers can provide more increased uptake of cycling.

Cycling takes **physical effort**. By minimising the number of times that cycle users have to stop, slow down and regain momentum, attractive facilities that encourage

Creating safe cycling

10 infrastructure can often be done quickly and economically by removing through-traffic from networks of local streets and safely connecting these networks. **Trialling these and other measures** on a temporary basis can help to test, monitor and improve the infrastructure and to gain public support.

Cycling infrastructure should be intuitive for all who **use it** or interact with it. It should be clear which space is allocated to different users, including pedestrians and motor vehicles. and how interactions are managed.

Designers should cycle and experience each route they design to fully appreciate how the users of their infrastructure experience the network.

Cycle routes must form part of fully connected **networks** and be of a consistent quality throughout. We would not design a road network that 'abandoned' drivers or required them to get out and push their vehicle between routes. Cycling must be no different.

Cycling infrastructure should 8 contribute positively to a sense of place. Along with other aspects of street design, it should attract people to use the infrastructure and spend time in the places that it is part of.

For these reasons, the design 12 requirements of Cycling by Design 2021 are **higher** than they were previously. Exceptions may be needed where it would otherwise prevent the completion of a full cycle network, but these can only be applied when absolutely necessary and with due consideration of the level of service and Design Review processes set out in this document.

NB: LTN 1/20 has 22 summary principles including:

> Use of side street routes in place of segregation

Auditing Links - Cycle Level of Service – LTN 1/20 Appendix A

Appendix A: Cycling Level of Service Tool

Key requirement	Factor	Design principle	Indicators	Critical	0 (Red)	1 (Amber)	2 (Green)	Score	Comments
	Connections	Cyclists should be able to easily and safety join and navigate along different sections of the same route and between different routes in the network.	1. Ability to join/leave route safely and easily: consider left and right turns		Cyclists cannot connect to other routes without dismounting	Cycliste can connect to other routes with minimal disruption to their journey	Cyclists have dedicated connections to other routes provided, with no interruption to their journey		
	Continuity and Wayfinding	Routes should be complete with no gaps in provision. 'End of routs' signs should not be installed - cyclists should be shown frow the route continues, Cyclists should not be 'abandorned', particularly at junctions where provision may be required to ensure safe crossing movements.	2. Provision for cyclists throughout the whole length of the route		Cyclists are "abandoned" at points along the route with no clear indication of how to continue their journey.	The route is made up of discrete sections, but cyclists can blearly understand how to navigate between them, including through junctions.	Cyclists are provided with a continuous route, including through junctions.		
Cahesion	Density of network	Cycle networks should provide a mesh (or grid) of routes across the fown or city. The density of the network is the distance between the routes which make up the grid pattern. The ultimate aim should be a network with a mesh width of 250m.	2: Density of routes based on mesh width ie distances between primary and secondary routes within the network		Route contributes to a network density mesh width >1000	Route contributes to a network density mesh width 250 – 1000m	Route contributes, to a network density mech width <250m		
Directross	Distance	Routes should follow the shortest option available and be as near to the "as-the-row-files" distance as possible.	4. Deviation of route Deviation Factor is calculated by dividing the actual distance along the route by the straight bine (trow-fly) distance, or shortest road alternative.		Deviation factor against straight line or shortest road alternative >1.4	Deviation factor against straight line or shortest road alternative 1.2 - 1.4	Deviation factor against straight line or shortest road atternative <1.2		

- Same approach in Welsh guidance
- Design Review in Cycling by Design (qualitative)
- Irish Cycle Manual includes a Quality of Service Evaluation

Quality of Service	Pavement condition (PCI range)	Number of adjacent cyclists	Number of conflicts per 100m of route	Journey time delay (% of total travel time)	HGV influence (% of total traffic volume)
Level A+	86 - 100	2+1	0-1	0 - 5%	0-1%
Level A	66 - 85	1+1	0-1	6-10%	0-1%
Level B	51-65	1+1	1-3	11 - 25%	2-5%
Level C	41 - 50	1 + 0	4 - 10	26 - 50%	6 - 10%
Level D	20 - 40	1 + 0	>10	>50%	>10%

Auditing Junctions - Cycle Level of Service – LTN 1/20 Appendix B

Type of junction	Cycle movement being assessed	Suitable only for confident existing cyclists, and may be avoided by some experienced cyclists Conditions are most likely to give rise to the most common collision types Score = 0	Likely to be more acceptable to most cyclists, but may still pose problems for less confident or new cyclists The risk of collisions has been reduced by design layout or traffic management interventions Score = 1	Suitable for all potential and existing cyclists The potential for collisions has been removed, or managed to a high standard of safety for cyclists Score = 2
Any type of junction	Any movement	 Cycle movement in potential conflict⁵⁷ with heavy motor traffic flow.⁵⁸ Cycle movement mixed with or crossing traffic with 85th percentile speed exceeding 60kph, or where vehicles accelerate rapidly. Necessary to cross more than one traffic lane (without refuge or protection) to complete cycle movement unless traffic flows are low. 	 Cycle movement in potential conflict with moderate traffic flow.⁵⁹ Cycle lanes through junction meeting appropriate desirable minimum width requirements for the movement under consideration. Raised table at junction crossed by traffic in potential conflict with cycle movement. Cycle movement made by transiting onto section of shared use footway. 	 Low⁸⁰ traffic speed and volume in mixed traffic environment (e.g. access- only streets in a residential area). Cycle movement separated physically and/or in time from motor traffic and also separated from pedestrians. Cycle movement bypasses junction completely, including via good quality grade separation.
Cycle acce	ss only on this	street	No entry excep Cycle acces Dedicated cy	t cycles' sign s only on this street cle signals, allowing

Compulsory left turn

'No entry except cycles' sign

Banned right turn

Cycle Strategy Route Review Junction 9.3 - Proposed							
Movement	Score	0 1	2	Connest			
1	1	1	2	Cycle movement in potential conflict with moderate traffic flow.			
2	1	1	2	Cycle movement in potential conflict with moderate traffic flow.			
3	2		3	Cycle movement separated physically and/or in time from motor traffic and also separated from pedestrians.			
4	2		3	Cycle movement separated physically and/or in time from motor traffic and also separated from pedestrians.			
5	2		3	Cycle movement separated physically and/or in time from motor traffic and also separated from pedestrians.			
6	1	1	2	Cycle movement in potential conflict with moderate traffic flow.			
7	1	1	3	Cycle movement in potential conflict with moderate traffic flow.			
8	1	1	2	Cycle movement in potential conflict with moderate traffic flow.			
3	2		3	Cycle movement separated physically and/or in time from motor traffic and also separated from pedestrians.			
10	1	1	3	Cycle movement in potential conflict with moderate traffic flow.			
11	1	1	2	Cycle movement in potential conflict with moderate traffic flow.			
12	1	1	2	Cycle movement in potential conflict with moderate traffic flow.			

Part 2 | Links

Delivering a better world

Links

- 1. Overview of when to protect cyclists
- 2. Kerbed segregation
- 3. Stepped segregation
- 4. Footway level segregation
- 5. 'Light' segregation
- 6. Mixed traffic routes
- 7. Offline / 'Greenway' routes
- 8. Link features (coloured surfacing; bus stops; parking/loading bays; transitions; tactile paving)
- 9. Key Geometric requirements

When to Protect?

	Speed Limit ¹	Motor Traffic	Pr	otected Space for C	Cycle Lane (mandatory/ advisory)	Mixed Traffic	
		Flow (pcu/24 hour) ² Fully Kerbed Cycle Track Track	Stepped Cycle Track	Light Segregation			
	20 mph ³	0 2000 4000 6000+					
	30 mph	0 2000 4000 6000+					
	40 mph	Any					
Speed & Volume Primary Factors	50+ mph	Any					
+ accesses)	Provision suitab Provision not su and/or have saf Provision suitab and/or have saf	le for most people itable for all people ar ety concerns le for few people and ety concerns	nd will exclude some po will exclude most poter	Notes 1. If hi htential users 2. Th is htial users 3. In rc	the 85 th percentile spee ghest speed limit shoul ne recommended provis no more than 10% of th rural areas achieving sp outes with speeds of up	ed is more than 10% aboved d be applied sion assumes that the pea ne 24 hour flow peeds of 20mph may be of to 30mph will be general	re the speed limit the ne ak hour motor traffic flov lifficult, and so shared ly acceptable with moto

Design in context of location (shared suitable in low density rural location?)

LTN 1/20

Kerbed Segregation (from carriageway)

Kerbed segregation

Cycling by Design

- Less space efficient
- Can be cheaper than stepped
- Can maintain crossfalls
- Consider drainage and upstand....

One-way or two-way (Cycling by Design)?

One-way cycle tracks are preferred to two-way cycle tracks when adjacent to the road carriageway, as they provide greater certainty to all road users of expected cycle movements and the interactions to be managed.

- Subject to kerbside activity, number of junctions, which side of road etc.
- Two-way not suitable with intermittent light segregation

Manual	Height							
Cycling by Design	60mm minimum (f/way)							
Welsh Design Guide	50mm minimum (c/way)							
LTN 1/20	50mm minimum (f/way) 50mm minimum (c/way)	N						
Irish Cycle Manual	50mm minimum (c/way) 50-75mm (f/way)	0 'f						

PCC kerb availability

No BS 50mm splay option, splay >60mm a 'fixed object' (LTN 1/20)

Half batter laid at <60mm not a 'fixed object'

Stepped Segregation (from carriageway)

Stepped segregation:

- More space efficient segregation
- More expensive than most kerbed segregation
- Altered crossfalls
- Potential obstruction by other users
- Consider drainage

Kerbs

Manual	Height
Cycling by Design	60mm minimum (f/way)
Welsh Design Guide	50mm minimum (c/way)
LTN 1/20	50mm minimum (f/way) 50mm minimum (c/way)
Irish Cycle Manual	50mm minimum (c/way) 50-75mm (f/way)

Cambridge kerb (flush transition available)

Manufacturer: <u>Charcon</u> / Aggregate Industries Product: Transition to square channel Material: precast concrete

Half batter/bullnose kerb (lowered at accesses)

Footway level (segregated from carriageway)

Footway level least desirable segregation however:

- May be part of a holistic designed street
- May be joining a detached track at same level
- May be regular crossing of track by prams/wheelchairs

- Presumption not suitable on urban

- Where less pedestrian & cycle

streets

onosite directi

Cycling by

Design

6 max 🕂 🚔

AECOM

Product Specifications

Supplier:	Rediweld
Model:	MiniOrca
Colour:	Black/White Standard (Red, Grey & Granite Grey
Fixings:	4 Fixings per unit - Bolt Down
Width:	120mm
Length:	720mm
Height:	50mm
Weight:	3 kg

Jislon Pole Cones are available in 800mm high or 1000mm heights, colour Black with TSRGD reflective banding and offer a NSE fixing.

Supplier:	Rosehill Highways
Model:	Wide Cycle Lane Defender
Colour:	Grey
Fixings:	LS01 - 4 x per double curve section - Bolt Down
	LS02 5 x per single curve section - Bolt Down
	LS03 6 x per extension piece - Bolt Down
Width:	500mm
Length:	1500mm
Height:	130mm
Weight:	LS01 - 95kg / LS02 - 105kg / LS03 - 105 kg

Bollard not included but can be purchased seperatelly.

-

NTA **Útlanža Nälstünta lompal** Nature Transport Authority

Rediweld Supplier:

Model: Jilson TSRGD Highway Black/White or Orange/White Colour: Fixings: 1 x NS or NSE fixing Diameter: 80mm 1000mm above ground Height: Weight: 2.15 kg

> Batons or wands are typically used at the beginning or end of a segregated cycle lane. Sign caps with cycle symbol or directions arrows can also be included.

Rediweld

Supplier:

Model: Orca Black/White - Zig Zag or Tip Toe Colour: Fixings: 3 x per unit - Bolt Down. Width: 200mm Length: 920mm 100mm Height: 6.5kg per unit. Weight:

upplier:	Resentill Highways
lodel:	Narrow Cycle Lane Defender
olour:	Grey
ixings:	NCL end- 4 x per end section - Bolt Down
	NCL mid - 4 x per continuation section - Bolt Down
	NCL DL end - 4 x per double end piece - Bolt Down
Vidth:	235mm
ength:	2000mm
leight:	130mm
Veight:	60 kg unit

Bollard not included but can be purchased seperatelly.

Supplier:	NAL
Model:	X-Last Nuvo Sign
Colour:	Various colours and styles dependant on bollard
Fixings:	design.
	Bolt Down Flange Plate;
	Retention Socket Install; or
	Concrete In Root
Diameter:	Bollard depedant – Approx 150mm
Height:	Depedant on bollard option – Approx 1000mm above ground.
Weight:	Less than 6kg.

Illuminated and non-illuminated bollards with various sign faces available.

Mixed Traffic Routes

Figure 7.2: Primary and secondary riding positions

Primary Centre of Lane Secondary 0.5m - 1m from kerb

- Low speed, low volume!
- Avoid 3.2m 3.9m 'dilemma zone'
- Traffic management can help
- Presumption that contraflow allowed?

Table 7-2: Minimum acceptable lane widths*

Feature	Desirable minimum	Absolute minimum	Notes
Traffic lane (cars only, speed limit 20/30mph)	3.0m	2.75m	2.5m only at offside queuing lanes where there is an adjacent flared lane
Traffic lane (bus route or >8% HGVs, or speed limit 40mph)	3.2m	3.0m	Lane widths of between 3.2m and 3.9m are not acceptable for cycling in mixed traffic.
2-way traffic lane (no centre line) between advisory cycle lanes	5.5m	4.0m	4.0m width only where AADT flow <4000 vehicles** and/or peak hour <500 vehicles with minimal HGV/Bus traffic.

* these lane widths assume traffic is free to cross the centre line, see 7.2.9 for details on critical widths at pinch points

** While centre line removal is still feasible with higher flows, the frequency at which oncoming vehicles must enter the cycle lane to pass one another can make the facility uncomfortable for cycling.
LTN 1/20

Unsegregated cycle contraflow using contemporary road setts on New St, Edinburgh, island entry from Canongate.

Offline / 'Greenway' routes

Uses can include:

- Longer distance cycle routes (recreational trips or commuting)
- Attractive routes in urban environment (e.g. towpaths)

River Shannon Greenway at University of Limerick – 4m columns with highly focussed lighting that restricts light spill into the trees.

Low bollard lighting on Baldoyle Greenway, Dublin adjoining SAC.

- Limit access control unless valid security concern
- Control cycle speeds through alignment

Link Features – Bus Stops

Link Features – Transitions

Cycle Track

Cycle Lane

Cycle Track $\leftarrow \rightarrow$ Carriageway

Carriageway to Cycle Track/Shared

Cycle Track to Shared Use

Geometric requirements

Width

Radii

Visibility

Crossfalls

SSD

Table 1: Ellon Park & Ride to Garthdee Stage 2 Option Packages

Package Description	Summary Cross Section
Active Travel Priority Package Provide active travel priority through segregated cycle tracks throughout the corridor (and thereafter consider what level of bus priority may be possible within main corridor)	Single traffic lane + segregated cycle tracks + footways (+ bus lanes, space permitting)
Public Transport Priority Package Provide bus priority infrastructure along the corridor through bus lanes (and thereafter consider what level of active travel improvements may be possible within main corridor)	Single traffic lane + bus lane + footways (+ segregated cycle track, space permitting)
Multi-Modal Transport & Travel Package Provide active travel and bus priority infrastructure along the corridor with requirement for third party land and carriageway redistribution	Single traffic lane + bus lane + segregated cycle tracks + footways
Dublic Terror and Deineite & Antine Terror Density Denter Denter	Holburn Street and King Street – single traffic lane + bus lane + footways
Provide bus priority along the main corridor and parallel active travel routes on Hardgate, Golf Road and/or Beach Esplanade	Ellon Road – traffic lanes + bus lane + segregated cycle tracks + footways
	Connections to and from parallel routes

Why are all these routes not Segregated Cycle Routes?

Figure B2: Proposed Roads Hierarchy, City Centre

Part 3 | Junctions

Delivering a better world

Junctions

- 1. Key principles
- 2. Priority junctions
- 3. Review others at your leisure
 - 1. ASL
 - 2. Hold the Left Turn
 - 3. Early Release

Key Principles

Table 10-1: Application of core design principles to junctions and crossings

Core design principle	Design aspects to consider		
Safety	Junctions should be designed to remove or manage conflicts between cyclists, motor traffic and pedestrians by one or more of the following:		
	 separating cyclists from motor traffic and pedestrians in space and/or time; 		
	 banning one or more motor traffic movements; 		
	 providing priority for cyclists over motor traffic; and/or 		
	> reducing the speed and volume of motor traffic movements so that cyclists can safely be integrated with them		
	Designs should identify and reduce conflict with Heavy Goods Vehicles.		
Directness	S The distance and time required for cyclists to travel through a junction should be minimised. Wherever possible their level of delay should be less than for motor traffic without increasing pedestrian delay.		
	Exempting cycles from turning movements that are banned for other vehicles will significantly increase directness and should always be considered.		
	Cycle crossings at junctions and across links should not be staggered.		
Coherence	Junctions should enable and facilitate cycle movements in all permitted directions.		
	These should be made in a legible manner, without requiring people to deviate significantly from their overall desire lines.		
Comfort	The occasions when cyclists need to stop or to give way should be minimised.		
	Routes through junctions should ease the passage of cyclists by providing a smooth surface of adequate width, with flush surfaces at transitions, and avoid street clutter.		
Attractiveness	Junctions are often important places where people gather and should be designed to suit and enhance their context.		

Source: LTN 1/20

Priority junctions

Figure 10.13: Priority crossings of cycle tracks at side roads*

junction and reduce speeds.

Signal-controlled junctions : Protected cycle movements Option 1 | Cyclists on the inside

- Straight across pedestrian crossings
- Two all-red stages
- Variant includes internal stop lines

2.75m (min)

island width

- Split movement pedestrian crossings
- Single all-red stage
- Increased crossing space requirement further from junction
 Source: Cycling by Design, 2021

Signal-controlled junctions : Protected cycle movements

Option 2 | Cyclists on the outside (CYCLOPS)

+ Improved angle of approach for cyclists+ Storage capacity for cyclists

- Junction footprint requirements
 - Potentially more difficult of
- pedestrians to negotiate, especially blind and partially sighted users

Royce Road / Chorlton Road, Manchester

Source: Cycling by Design, 2021

Part 4 | Crossings

Summary of the Crossing Types and Tools to assist your choice

Delivering a better world

Crossings

6.35. Crossing and Junction Design – General Principles

Function, form and use

6.35.1 The design of junctions and crossings must be comprehensible to all users, and it is essential that this is applied to pedestrians and cyclists as well as motorised road users.

User requirements for junctions and crossings

6.35.2 The user requirements of directness, safety and comfort are significant at junctions and crossings.

Junctions and crossings

It is essential that the needs of cyclists are taken into account in the design of all new and improved junctions, not just those on designated cycle routes, and that crossings are provided where cycle routes continue across busy highways. Safety is vital, but junctions and crossings should also enable cyclists to negotiate them in comfort without undue delay or deviation. Junctions should be designed to enable cycle movements in all permitted directions. The design of cycle facilities should take into account the volume and speed of motor traffic and the type and size of the junction. At quieter junctions it may be safer to integrate cyclists into the general traffic streams to reduce the number of conflicts but at busier junctions it will be necessary to separate and protect cycle movements. The Junction Assessment Tool (Appendix B) should be used to assess how well junctions meet cyclists' needs.

Crossings

- 1. What crossing type?
- 2. Parallel & Zebra
- 3. Uncontrolled
- 4. Cycle Priority Crossing
- 5. Signal controlled crossings
- 6. Grade separated crossings

6.36. Crossing Types

- 6.36.1 There are two overall types of crossing grade-separated, such as bridges and subways and at-grade crossings such as zebra crossings.
- 6.36.3 There are two overall types of at-grade crossing:
 - Uncontrolled crossings pedestrian / cyclist usually has to give-way
 to road traffic, but in some cases these can be designed as a courtesy
 crossing where drivers are encouraged to give way to pedestrians /
 cyclists through the overall design; or can give priority to cycle traffic
 through the use of appropriate signs; and
 - Controlled crossings road traffic has to give-way to or stop for pedestrians and / or cyclists

How do you make the decision?

Table 10-2: Crossing design suitability

Speed Limit	Total traffic flow to be crossed (pcu)	Maximum number of lanes to be crossed in one movement	Uncontrolled	Cycle Priority	Parallel	Signal	Grade separated
e tillenpix	được	Airp.					
t0-rephand	> 10000	Any					
vo reph	5000 to 10000	2 ut more		-	-		
	0-6000	2					
	0-310003	t					
- Ministria	Caner	125			-		-
Scoupe	- ALEST	1		-	-	-	_
	ANE WEEK	2		-		-	-
	- 1007	-				_	
	0-1000	1		-			
	0-4000	1.	Y				

Provision suitable for most people

Provision not suitable for all people and will exclude some potential users and/or have safety concerns

Provision suitable for lew people and will exclude most potential users and/or have safety concerts

Cycle Infrastructure Design	
Local Transport Note 1/20 July 2020	>

Notes:

- If the actual 85th percentile speed is more than 10% above the speed limit the next highest speed limit should be applied
- the recommended provision assumes that the peak hour motor traffic flow is no more than 10% of the 24 hour flow

Motor Traffic Speed (85th percentile)	Uncontrolled	Controlled Zebra or Parallel	Signal- Controlled	Grade Separated
0 to 30 kph	00			
30 kph to 55 kph	•			
55 kph to 80 kph	•	. x .		
More than 80 kph	•	×	×	

• • • • High Level of Service: Suitable for most users.

Medium Level of Service: May not be suitable for some users, particularly novice users. Designer shall consider the lack of attractiveness of the facility to these users and how this can be overcome or mitigated. Low Level of Service: Not suitable for a range of users, including novice and intermediate users. Shall be avoided unless the risk to these users is conveyed to the Overseeing Organisation by the designer and accepted by the Overseeing Organisation. See Section 2.4.

X Should not be used.

Table 4.1: Selection matrix for road crossings

Crossing - Summary

Cycle Design Manual

Table 4.19: Sugested Cycle Priroity at Side Roads

Place Context

Cycle priority recommended Cycle priroity should be considered Vehicle priority recommended

Note: Designers should refer to DMURS Section 3.2 for guidance and definitions on movement function and place context.

Part 5 | Supporting Measures

We could have spent a whole session on the next chapters, but we felt discussion was important.

So please jump into the manuals as we have and explore the advice.

Delivering a better world

Cycle parking and other equipment

Oycle parking is an essential component of cycle infrastructure. Sufficient and convenient residential cycle parking enables people to choose cycling. At the trip end, proximity to destinations is important for short stay parking, while for longer-stay parking security concerns can be a factor. As with other infrastructure, designers should consider access for all cycles and their passengers. Additional equipment and services enhance the quality of experience and convenience of cycling, making it accessible and attractive to more people.

6.0 Trip End Facilities

6.1	Principles page 207
6.2	Cycle parking page 208
6.3	Public transport integration page 229
6.4	Public cycle hire page 231
6.5	Active travel hubs page 233
6.6	Other trip-end facilities

Figure Numbers	
Figure 6.1:	Sheffield stand and M-profile stand page 214
Figure 6.2:	Sheffield stand layouts page 215
Figure 6.3:	Two-tier stand
Figure 6.4:	Wall Loop page 222
Figure 6.5:	Cycle Store layout
Figure 6.6:	Horizontal Cycle Locker layout page 226
Figure 6.7:	Example of buses with cycle storage operating on Borders Buses services in Scottish Borders

Table Numbers

Cycling by Design 2021

8 Related Facilities

This Chapter provides guidance on the design of important related facilities for walking and cycling, including seating, cycle parking and direction signing. It provides guidance in relation to Section 2(9) of the Active Travel Act. In determining whether anything constitutes related facilities for the purposes of this Act a local authority must have regard to this guidance.

8.1. Introduction

Page 206

- 8.1.1 Section 2 (8) of the Active Travel Act defines a range of features as related facilities for the purposes of the Act including:
- facilities for shelter, resting or storage,
- b) toilets or washing facilities,
- c) signing, or
- other facilities, which are available for use by, or by any description of, walkers and cyclists using the active travel route.
- 8.1.2 As noted in Chapter 4 walking and cycling have many similarities and yet they have different user needs. This also applies for related facilities; cyclists will require facilities for showering and secure locations to leave their cycle whilst pedestrians will require seating and shelter to rest. Both pedestrians and cyclists will require clear direction signing, whilst well maintained planting and public art can contribute to visual amenity.

Traffic signs, road markings and wayfinding

50

Traffic signs and road markings must comply with the Traffic Signs Regulations and General Directions, or be authorised by the Secretary of State, when used within the highway, but the legislation allows for considerable flexibility in their use. There is a balance to be struck between providing enough signs for people to be able to understand and follow cycle infrastructure and ensuring that the signs themselves do not create confusion or street clutter. Routes on other rights of way not on the highway can use customised waymarking.

Questions & Discussion

Peter Leslie (peter.leslie@aecom.com)

Delivering a better world

Thank you.

Peter Leslie (peter.leslie@aecom.com)

Delivering a better world

